GCE

Mathematics

Advanced GCE
Unit 4727: Further Pure Mathematics 3

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 (i)

$$
\begin{aligned}
& \theta=\sin ^{-1} \frac{|[5,6,-7] \cdot[1,2,-1]|}{\sqrt{5^{2}+6^{2}+(-7)^{2}} \sqrt{1^{2}+2^{2}+(-1)^{2}}} \\
& \theta=\sin ^{-1} \frac{24}{\sqrt{110} \sqrt{6}}=69.1^{\circ}(69.099 \ldots, 1.206) \\
& \phi=\sin ^{-1} \frac{|[5,6,-7] \times[1,2,-1]|}{\sqrt{5^{2}+6^{2}+(-7)^{2}} \sqrt{1^{2}+2^{2}+(-1)^{2}}} \\
& \phi=\sin ^{-1} \frac{\sqrt{84}}{\sqrt{110} \sqrt{6}}=20.9^{\circ} \Rightarrow \theta=69.1^{\circ}
\end{aligned}
$$

(ii) METHOD 1

$$
d=\frac{|1+12+3-40|}{\sqrt{1^{2}+2^{2}+(-1)^{2}}}=\frac{24}{\sqrt{6}}=4 \sqrt{6} \approx 9.80
$$

METHOD 2
$(1+\lambda)+2(6+2 \lambda)-(-3-\lambda)=40$
$\Rightarrow \lambda=4 \Rightarrow d=4 \sqrt{6}$
$O R$ distance from $(1,6,-3)$ to $(5,14,-7)$
$=\sqrt{4^{2}+8^{2}+(-4)^{2}}=\sqrt{96}$

METHOD 3

Plane through $(1,6,-3)$ parallel to p is
$x+2 y-z=16 \Rightarrow d=\frac{40-16}{\sqrt{6}}=\frac{24}{\sqrt{6}}$

METHOD 4

e.g. $(0,0,-40)$ on p
\Rightarrow vector to $(1,6,-3)= \pm(1,6,37)$
$d=\frac{|[1,6,37] \cdot[1,2,-1]|}{\sqrt{6}}=\frac{24}{\sqrt{6}}$
METHOD 5
l meets p where $(1+5 t)+2(6+6 t)-(-3-7 t)=40$
$\Rightarrow t=1 \Rightarrow d=|[5,6,-7]| \sin \theta$

M1* For using scalar product of line and plane vectors
For both moduli seen
(*dep)
A1
A1 4 For correct angle
SR For vector product of line and plane vectors
M1* AND finding modulus of result
For moduli of line and plane vectors seen (*dep)
A1 For correct modulus $\sqrt{84}$
A1 For correct angle

M1 For use of correct formula
A1 2 For correct distance

M1 For substituting parametric form into plane
A1 For correct distance

M1 For using any point on p to find vector

A1 For correct distance

M1
A1 For correct distance
M1 For finding parallel plane through (1, 6, -3)
A1 For correct distance

Abstract

and scalar product seen

e.g. $[1,6,37]$. $[1,2,-1]$

For finding t where l meets p
and linking d with triangle
$\Rightarrow d=\sqrt{110} \frac{24}{\sqrt{110} \sqrt{6}}=\frac{24}{\sqrt{6}}$

2 (i) METHOD 1
EITHER $\frac{1+\mathrm{e}^{\mathrm{i} \theta}}{1-\mathrm{e}^{\mathrm{i} \theta}}=\frac{\mathrm{e}^{-\frac{1}{2} \mathrm{i} \theta}+\mathrm{e}^{\frac{1}{2} \mathrm{i} \theta}}{\mathrm{e}^{-\frac{1}{2} \mathrm{i} \theta}-\mathrm{e}^{\frac{1}{2} \mathrm{i} \theta}}$

$$
=\frac{2 \cos \frac{1}{2} \theta}{-2 \mathrm{i} \sin \frac{1}{2} \theta}=\mathrm{i} \cot \frac{1}{2} \theta
$$

$O R$ in reverse with similar working

EITHER For changing LHS terms to $\mathrm{e}^{ \pm \frac{1}{2} \mathrm{i} \theta}$
OR in reverse For using $\cot \frac{1}{2} \theta=\frac{\cos \frac{1}{2} \theta}{\sin \frac{1}{2} \theta}$
For either of ${ }_{\sin }^{\cos } \frac{1}{2} \theta=\frac{\mathrm{e}^{\frac{1}{2} \mathrm{i} \theta} \pm \mathrm{e}^{-\frac{1}{2} \mathrm{i} \theta}}{\text { (2)(i) }}$ soi
For fully correct proof to AG
SR If factors of 2 or i are not clearly seen, award M1 M1 A0

2 (i) METHOD 2

$$
\begin{aligned}
& \text { EITHER } \frac{1+\mathrm{e}^{\mathrm{i} \theta}}{1-\mathrm{e}^{\mathrm{i} \theta}} \times \frac{1-\mathrm{e}^{-\mathrm{i} \theta}}{1-\mathrm{e}^{-\mathrm{i} \theta}}=\frac{\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}}{2-\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)} \\
& \text { OR } \frac{1+\cos \theta+\mathrm{i} \sin \theta}{1-\cos \theta-\mathrm{i} \sin \theta} \times \frac{1-\cos \theta+\mathrm{i} \sin \theta}{1-\cos \theta+\mathrm{i} \sin \theta} \\
& =\frac{2 \mathrm{i} \sin \theta}{2-2 \cos \theta}=\frac{2 \mathrm{i} \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta}{2 \sin ^{2} \frac{1}{2} \theta}=\mathrm{i} \cot \frac{1}{2} \theta
\end{aligned}
$$

M1

M1
A1
METHOD 3
$\frac{1+\cos \theta+\mathrm{i} \sin \theta}{1-\cos \theta-\mathrm{i} \sin \theta}=\frac{2 \cos ^{2} \frac{1}{2} \theta+2 \mathrm{i} \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta}{2 \sin ^{2} \frac{1}{2} \theta-2 \mathrm{i} \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta}$
$=\frac{2 \cos \frac{1}{2} \theta\left(\cos \frac{1}{2} \theta+\mathrm{i} \sin \frac{1}{2} \theta\right)}{2 \sin \frac{1}{2} \theta\left(\sin \frac{1}{2} \theta-\mathrm{i} \cos \frac{1}{2} \theta\right)}$
$=i \cot \frac{1}{2} \theta \frac{\left(\sin \frac{1}{2} \theta-i \cos \frac{1}{2} \theta\right)}{\left(\sin \frac{1}{2} \theta-i \cos \frac{1}{2} \theta\right)}=i \cot \frac{1}{2} \theta$
M1 For using both double angle formulae correctly

A1

METHOD 4
$\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta-i \sin \theta}=\frac{1+\frac{1-t^{2}}{1+t^{2}}+\mathrm{i} \frac{2 t}{1+t^{2}}}{1-\frac{1-t^{2}}{1+t^{2}}-\mathrm{i} \frac{2 t}{1+t^{2}}}$
$=\frac{2+2 \mathrm{i} t}{2 t^{2}-2 \mathrm{i} t}=\frac{1}{t} \frac{1+\mathrm{i} t}{t-\mathrm{i}}=\frac{\mathrm{i}}{t} \frac{t-\mathrm{i}}{t-\mathrm{i}}=\mathrm{i} \cot \frac{1}{2} \theta$
METHOD 5
$\frac{1+\mathrm{e}^{\mathrm{i} \theta}}{1-\mathrm{e}^{\mathrm{i} \theta}} \times \frac{1+\mathrm{e}^{\mathrm{i} \theta}}{1+\mathrm{e}^{\mathrm{i} \theta}}=\frac{1+2 \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{2 \mathrm{i} \theta}}{1-\mathrm{e}^{2 \mathrm{i} \theta}}$
$=\frac{2+\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}}{\mathrm{e}^{-\mathrm{i} \theta}-\mathrm{e}^{\mathrm{i} \theta}}$
$=\frac{2(1+\cos \theta)}{-2 i \sin \theta}=\frac{2 \cos ^{2} \frac{1}{2} \theta}{-2 i \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta}=\frac{\cos \frac{1}{2} \theta}{-i \sin \frac{1}{2} \theta}$
$=\mathrm{i} \cot \frac{1}{2} \theta$
(ii)

M1
A1

For multiplying top and bottom by $1+\mathrm{e}^{\mathrm{i} \theta}$ and attempting to divide by $\mathrm{e}^{\mathrm{i} \theta}$
OR multiplying top and bottom by $1+\mathrm{e}^{-\mathrm{i} \theta}$
For using both double angle formulae correctly

A1 3 For fully correct proof to AG
For appropriate factorisation
For fully correct proof to AG

For using both double angle formulae correctly
For fully correct proof to AG

For appropriate factorisation

For fully correct proof to AG

For substituting both t formulae correctly

M1 For a circle centre O
A1 For indication of radius = 1
and anticlockwise arrow shown
B1 3 For locus of w shown as imaginary axis described downwards

3 (i)	METHOD 1 $m+4(=0) \Rightarrow \mathrm{CF}(y=) A \mathrm{e}^{-4 x}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	For correct auxiliary equation (soi) For correct CF
	METHOD 2		
	Separating variables on $\frac{\mathrm{d} y}{\mathrm{~d} x}+4 y=0$		
	$\Rightarrow \mathrm{CF}(y=) A \mathrm{e}^{-4 x}$	A1	For correct CF
(ii)	PI ($y=$) $p \cos 3 x+q \sin 3 x$	B1	For stating PI of correct form
	$y^{\prime}=-3 p \sin 3 x+3 q \cos 3 x$	M1	For substituting y and y^{\prime} into DE
	$\Rightarrow(-3 p+4 q) \sin 3 x+(4 p+3 q) \cos 3 x=5 \cos 3 x$	A1	For correct equation
	$\left.\Rightarrow \begin{array}{r} -3 p+4 q=0 \\ 4 p+3 q=5 \end{array}\right\} \Rightarrow p=\frac{4}{5}, q=\frac{3}{5}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 A1 } \end{aligned}$	For equating coeffs and solving For correct value of p, and of q
	GS $\left(y=A \mathrm{e}^{-4 x}+\frac{4}{5} \cos 3 x+\frac{3}{5} \sin 3 x\right.$	B1 $\sqrt{ }$	For GS f.t. from their CF+PI with 1 arbitrary constant in CF and none in PI
	SR Integrating factor method may be used, followed by 2 -stage integration by parts or $C+\mathrm{i} S$ method		
		Marks	(i) are awarded only if CF is clearly identified
(iii)	$\mathrm{e}^{-4 x} \rightarrow 0, \frac{4}{5} \cos 3 x+\frac{3}{5} \sin 3 x=\sin _{\cos }(3 x+\alpha)$	M1	For considering either term
	$\Rightarrow-1 \leqslant y \leqslant 1 \quad$ OR $-1 \lesssim y \lesssim 1$	A1 $\sqrt{ } 2$	For correct range (allow <) CWO f.t. as $-\sqrt{p^{2}+q^{2}} \leqslant y \leqslant \sqrt{p^{2}+q^{2}}$ from (ii)
	11		
4 (i)	$a b c=(a b) c=(b a) c=b(a c)=$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	For using commutativity correctly For correct proof (use of associativity may be implied)
	$b(c a)=(b c) a=(c b) a=c b a$		
	Minimum working: $a b c=b a c=b c a=c b a$		
	OR $a b c=a c b=c a b=c b a$		
	$O R a b c=b a c=b c a=c b a$		
(ii)	$\{e, a\},\{e, b\},\{e, c\},\{e, b c\},\{e, c a\},\{e, a b\},\{e, a b c\}$	B1	For any 5 subgroups
		B1. 2	For the other 2 subgroups and none incorrect
(iii)	$\{e, a, b, a b\},\{e, a, c, c a\},\{e, b, c, b c\}$ $\{e, a, b c, a b c\},\{e, b, c a, a b c\},\{e, c, a b, a b c\}$ $\{e, b c, c a, a b\}$	B1	For any 3 subgroups
		B1	For 1 more subgroup
			For 1 more subgroup (5 in total) and none incorrect
(iv)	All elements $(\neq e)$ have order 2 $O R$ all are self-inverse $O R$ no element of G has order 4 $O R$ no order 4 subgroup has a generator or is cyclic $O R$ subgroups are of the form $\{e, a, b, a b\}$	B1*	For appropriate reference to order of elements in G
	\Rightarrow all order 4 subgroups are isomorphic $\begin{aligned} & \text { (the Klein group) }\end{aligned}$		
		B1 (*dep)	For correct conclusion
		9	

7 (i)

B1 For sketch of tetrahedron labelled in some way
At least one right angle at O must be indicated or clearly implied

M1 \quad For using $\Delta=\frac{1}{2}$ base \times height

$$
\Delta O P Q=\frac{1}{2} p q, \Delta O Q R=\frac{1}{2} q r, \Delta O R P=\frac{1}{2} r p \quad \text { A1 } \quad 3 \quad \text { For all areas correct CAO }
$$

ii)
$\frac{1}{2}|\overrightarrow{R P} \times \overrightarrow{R Q}|=\frac{1}{2}|\overrightarrow{R P}||\overrightarrow{R Q}| \sin R=\Delta P Q R$
B1 1 For correct justification

LHS $=\left(\frac{1}{2} p q\right)^{2}+\left(\frac{1}{2} q r\right)^{2}+\left(\frac{1}{2} r p\right)$
B1 For correct expression
$\Delta P Q R=\frac{1}{2}|(p \mathbf{i}-q \mathbf{j}) \times(p \mathbf{i}-r \mathbf{k})|$
B1
For $\triangle P Q R$ in vector form
OR $\quad \frac{1}{2}|(p \mathbf{i}-r \mathbf{k}) \times(q \mathbf{j}-r \mathbf{k})|$
OR $\quad \frac{1}{2}|(p \mathbf{i}-q \mathbf{j}) \times(q \mathbf{j}-r \mathbf{k})|$
$\Delta P Q R=\frac{1}{2}|q r \mathbf{i}+p r \mathbf{j}+p q \mathbf{k}|$

RHS $=\frac{1}{4}\left((p q)^{2}+(q r)^{2}+(r p)^{2}\right)$
M1 For finding vector product of their attempt at $\triangle P Q R$
A1 For correct expression
M1 \quad For using $|a \mathbf{i}+b \mathbf{j}+c \mathbf{k}|=\sqrt{a^{2}+b^{2}+c^{2}}$
A1 6 For completing proof of AG WWW
10

8 (i)
$\operatorname{Re}(c+\mathrm{i} s)^{4}=\cos 4 \theta=c^{4}-6 c^{2} s^{2}+s^{4}$
$\cos 4 \theta=c^{4}-6 c^{2}\left(1-c^{2}\right)+\left(1-c^{2}\right)^{2}$
$\Rightarrow \cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$
(ii)
$\cos 4 \theta \cos 2 \theta=\left(8 c^{4}-8 c^{2}+1\right)\left(2 c^{2}-1\right)$
$=16 \cos ^{6} \theta-24 \cos ^{4} \theta+10 \cos ^{2} \theta-1$
(iii) $16 c^{6}-24 c^{4}+10 c^{2}-2=0$
$\Rightarrow\left(c^{2}-1\right)\left(8 c^{4}-4 c^{2}+1\right)=0$
For quartic, $b^{2}-4 a c=16-32<0$
$\Rightarrow c= \pm 1$ only $\Rightarrow \theta=n \pi$

For expanding $(c+i s)^{4}$: at least 2 terms and 1 binomial coefficient needed For 3 correct terms
A1
M1 (*dep)
A1 4 For correct expression for $\cos 4 \theta$ CAO
For multiplying by $\left(2 c^{2}-1\right)$
B1 $\mathbf{1}$ to obtain AG WWW
M1 For factorising sextic
with $(c-1),(c+1)$ or $\left(c^{2}-1\right)$
A1 For justifying no other roots CWO
A1 3 For obtaining $\theta=n \pi$ AG
Note that M1 A0 A1 is possible
SR For verifying $\theta=n \pi$ by substituting $c= \pm 1$
into $16 c^{6}-24 c^{4}+10 c^{2}-2=0$ B1
(iv) $16 c^{6}-24 c^{4}+10 c^{2}=0$
$\Rightarrow c^{2}\left(8 c^{4}-12 c^{2}+5\right)=0$
M1 For factorising sextic with c^{2}
For quartic, $b^{2}-4 a c=144-160<0$
$\Rightarrow \cos \theta=0$ only

A1 For justifying no other roots CWO
A1 3 For correct condition obtained AG
Note that M1 A0 A1 is possible
SR For verifying $\cos \theta=0$ by substituting $c=0$ into $16 c^{6}-24 c^{4}+10 c^{2}=0 \quad$ B1
SR For verifying $\theta=\frac{1}{2} \pi$ and $\theta=-\frac{1}{2} \pi$ satisfy $\cos 4 \theta \cos 2 \theta=-1 \quad \mathrm{~B} 1$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

