

Mathematics

Advanced GCE

Unit 4727: Further Pure Mathematics 3

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Mark Scheme

1 (i)	$\theta = \sin^{-1} \frac{\left [5, 6, -7] \cdot [1, 2, -1] \right }{\sqrt{5^2 + 6^2 + (-7)^2} \sqrt{1^2 + 2^2 + (-1)^2}}$ $\theta = \sin^{-1} \frac{24}{\sqrt{110}\sqrt{6}} = 69.1^{\circ} (69.099^{\circ}, 1.206)$ $\phi = \sin^{-1} \frac{\left [5, 6, -7] \times [1, 2, -1] \right }{\sqrt{5^2 + 6^2 + (-7)^2} \sqrt{1^2 + 2^2 + (-1)^2}}$	M1* M1 (*dep) A1 A1 4 SR M1* M1 (*dep) A1	 For using scalar product of line and plane vectors For both moduli seen For correct scalar product For correct angle For vector product of line and plane vectors AND finding modulus of result For moduli of line and plane vectors seen For correct modulus √84
(ii)	$\phi = \sin^{-1} \frac{\sqrt{84}}{\sqrt{110}\sqrt{6}} = 20.9^{\circ} \implies \theta = 69.1^{\circ}$ METHOD 1 $d = \frac{ 1+12+3-40 }{\sqrt{1^2+2^2+(-1)^2}} = \frac{24}{\sqrt{6}} = 4\sqrt{6} \approx 9.80$	A1 M1 A1 2	For use of correct formula For correct distance
	METHOD 2 $(1+\lambda) + 2(6+2\lambda) - (-3-\lambda) = 40$ $\Rightarrow \lambda = 4 \Rightarrow d = 4\sqrt{6}$ OR distance from (1, 6, -3) to (5, 14, -7) $= \sqrt{4^2 + 8^2 + (-4)^2} = \sqrt{96}$	M1 A1	For substituting parametric form into plane For correct distance
	METHOD 3 Plane through (1, 6, -3) parallel to p is $x+2y-z=16 \Rightarrow d = \frac{40-16}{\sqrt{6}} = \frac{24}{\sqrt{6}}$	M1 A1	For finding parallel plane through (1, 6, – 3) For correct distance
	METHOD 4 e.g. $(0, 0, -40)$ on p \Rightarrow vector to $(1, 6, -3) = \pm (1, 6, 37)$	M1	For using any point on p to find vector and scalar product seen e.g. [1, 6, 37] \cdot [1, 2, -1]
	$d = \frac{ [1, 6, 37] \cdot [1, 2, -1] }{\sqrt{6}} = \frac{24}{\sqrt{6}}$	A1	For correct distance
	METHOD 5 l meets p where (1+5t) + 2(6+6t) - (-3-7t) = 40 $\Rightarrow t = 1 \Rightarrow d = [5, 6, -7] \sin \theta$ $\Rightarrow d = \sqrt{110} \frac{24}{\sqrt{110}\sqrt{6}} = \frac{24}{\sqrt{6}}$	M1 A1	For finding <i>t</i> where <i>l</i> meets <i>p</i> and linking <i>d</i> with triangle For correct distance
		6	
2 (i)	METHOD 1 EITHER $\frac{1+e^{i\theta}}{1-e^{i\theta}} = \frac{e^{-\frac{1}{2}i\theta} + e^{\frac{1}{2}i\theta}}{e^{-\frac{1}{2}i\theta} - e^{\frac{1}{2}i\theta}}$	M1	<i>EITHER</i> For changing LHS terms to $e^{\pm \frac{1}{2}i\theta}$ <i>OR in reverse</i> For using $\cot \frac{1}{2}\theta = \frac{\cos \frac{1}{2}\theta}{\sin \frac{1}{2}\theta}$
	$= \frac{2\cos\frac{1}{2}\theta}{-2i\sin\frac{1}{2}\theta} = i\cot\frac{1}{2}\theta$ <i>OR in reverse</i> with similar working	M1 A1 3	For either of $\frac{\cos \frac{1}{2}}{\sin \frac{1}{2}}\theta = \frac{e^{\frac{1}{2}i\theta} \pm e^{-\frac{1}{2}i\theta}}{(2)(i)}$ soi For fully correct proof to AG SR If factors of 2 or i are not clearly seen, award M1 M1 A0

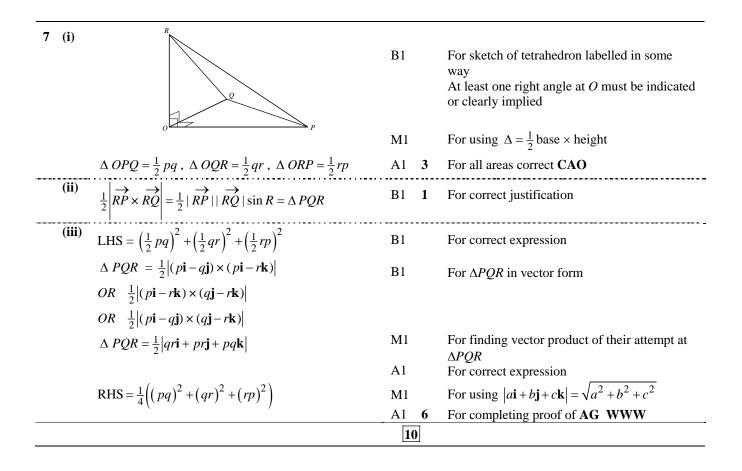
4727

Mark Scheme

2 (i)	METHOD 2		
	EITHER $\frac{1+e^{i\theta}}{1-e^{i\theta}} \times \frac{1-e^{-i\theta}}{1-e^{-i\theta}} = \frac{e^{i\theta}-e^{-i\theta}}{2-\left(e^{i\theta}+e^{-i\theta}\right)}$	M1	For multiplying top and bottom by complex conjugate in exp or trig form
	$OR \; \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta} \times \frac{1 - \cos\theta + i\sin\theta}{1 - \cos\theta + i\sin\theta}$	241	
	$=\frac{2i\sin\theta}{2-2\cos\theta}=\frac{2i\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta}{2\sin^2\frac{1}{2}\theta}=i\cot\frac{1}{2}\theta$	M1 A1	For using both double angle formulae correctly For fully correct proof to AG
	METHOD 3		Tor fully concer proof to AG
	$\frac{1+\cos\theta+i\sin\theta}{1-\cos\theta-i\sin\theta} = \frac{2\cos^2\frac{1}{2}\theta+2i\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta}{2\sin^2\frac{1}{2}\theta-2i\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta}$	M1	For using both double angle formulae correctly
	$=\frac{2\cos\frac{1}{2}\theta\left(\cos\frac{1}{2}\theta+i\sin\frac{1}{2}\theta\right)}{2\sin\frac{1}{2}\theta\left(\sin\frac{1}{2}\theta-i\cos\frac{1}{2}\theta\right)}$	M1	For appropriate factorisation
	$= \operatorname{i} \cot \frac{1}{2} \theta \frac{\left(\sin \frac{1}{2} \theta - \operatorname{i} \cos \frac{1}{2} \theta\right)}{\left(\sin \frac{1}{2} \theta - \operatorname{i} \cos \frac{1}{2} \theta\right)} = \operatorname{i} \cot \frac{1}{2} \theta$	A1	For fully correct proof to AG
	METHOD 4		
	$\frac{1+\cos\theta+i\sin\theta}{1-\cos\theta-i\sin\theta} = \frac{1+\frac{1-t^2}{1+t^2}+i\frac{2t}{1+t^2}}{1-\frac{1-t^2}{1+t^2}-i\frac{2t}{1+t^2}}$	M1	For substituting both <i>t</i> formulae correctly
	$= \frac{2+2it}{2t^2-2it} = \frac{1}{t} \frac{1+it}{t-i} = \frac{i}{t} \frac{t-i}{t-i} = i \cot \frac{1}{2}\theta$	M1 A1	For appropriate factorisation For fully correct proof to AG
	METHOD 5		
	$\frac{1+e^{i\theta}}{1-e^{i\theta}} \times \frac{1+e^{i\theta}}{1+e^{i\theta}} = \frac{1+2e^{i\theta}+e^{2i\theta}}{1-e^{2i\theta}}$		For multiplying top and bottom by $1 + e^{i\theta}$
		M (1	
	$=\frac{2+e^{i\theta}+e^{-i\theta}}{e^{-i\theta}-e^{i\theta}}$	M1	and attempting to divide by $e^{i\theta}$ <i>OR</i> multiplying top and bottom by $1 + e^{-i\theta}$
	$= \frac{2(1+\cos\theta)}{-2i\sin\theta} = \frac{2\cos^2\frac{1}{2}\theta}{-2i\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta} = \frac{\cos\frac{1}{2}\theta}{-i\sin\frac{1}{2}\theta}$	M1	For using both double angle formulae correctly
	$=i\cot\frac{1}{2}\theta$	A1 3	For fully correct proof to AG
(ii)	im im im z w	M1	For a circle centre <i>O</i>
	re re	A1 B1 3	For indication of radius $= 1$ and anticlockwise arrow shown For locus of <i>w</i> shown as imaginary axis described downwards
		6	

4727

Mark Scheme


METHOD 1	M1	For correct auxiliary equation (soi)
	A1 2	For correct CF
		·
$\Rightarrow \ln y = -4x$	M1	For integration to this stage
\Rightarrow CF (y =)Ae ^{-4x}	A1	For correct CF
$PI (y =) p \cos 3x + q \sin 3x$	B1	For stating PI of correct form
$y' = -3p\sin 3x + 3q\cos 3x$	M1	For substituting y and y' into DE
$\Rightarrow (-3p+4q)\sin 3x + (4p+3q)\cos 3x = 5\cos 3x$	A1	For correct equation
$\Rightarrow \frac{-3p+4q=0}{4p+3q=5} \Rightarrow p = \frac{4}{5}, q = \frac{3}{5}$	M1 A1 A1	For equating coeffs and solving For correct value of p , and of q
GS $(y =) Ae^{-4x} + \frac{4}{5}\cos 3x + \frac{3}{5}\sin 3x$	B1√ 7	For GS f.t. from their CF+PI with 1 arbitrary constant
SR Integrating factor method may be use		in CF and none in PI d by 2-stage integration by parts or $C+iS$ method for (i) are awarded only if CF is clearly identified
$e^{-4x} \rightarrow 0$, $\frac{4}{5}\cos 3x + \frac{3}{5}\sin 3x = \frac{\sin}{3\cos}(3x + \alpha)$	M1	For considering either term
5 5 603	A1√ 2	For correct range (allow <) CWO
$\Rightarrow -1 \leqslant y \leqslant 1$ OK $-1 \approx y \approx 1$		f.t. as $-\sqrt{p^2+q^2} \leq y \leq \sqrt{p^2+q^2}$ from (ii)
	11	
(-1)		
		For using commutativity correctly For correct proof
		(use of associativity may be implied)
$OR \ abc = bac = bca = cba$		
$\{e, a\}, \{e, b\}, \{e, c\}, \{e, bc\}, \{e, ca\}, \{e, ab\}, \{e, abc\}$	B1	For any 5 subgroups
	B1 2	For the other 2 subgroups and none incorrect
		For any 3 subgroups
$\{e, a, bc, abc\}, \{e, b, ca, abc\}, \{e, c, ab, abc\}$		For 1 more subgroup
$\{e, bc, ca, ab\}$	B1 3	For 1 more subgroup (5 in total) and none incorrect
All elements $(\neq e)$ have order 2	B1*	For appropriate reference to order of elements
OR all are self-inverse		in G
OR no element of G has order 4		
OR no order 4 subgroup has a generator or is cyclic		
<i>OR</i> subgroups are of the form $\{e, a, b, ab\}$		
<i>OR</i> subgroups are of the form $\{e, a, b, ab\}$ (the Klein group)	R1	For correct conclusion
<i>OR</i> subgroups are of the form $\{e, a, b, ab\}$	B1 (*dep) 2	For correct conclusion
_	$\Rightarrow CF (y =) Ae^{-4x}$ PI (y =) $p \cos 3x + q \sin 3x$ y' = $-3p \sin 3x + 3q \cos 3x$ $\Rightarrow (-3p + 4q) \sin 3x + (4p + 3q) \cos 3x = 5 \cos 3x$ $\Rightarrow \frac{-3p + 4q = 0}{4p + 3q = 5} \Rightarrow p = \frac{4}{5}, q = \frac{3}{5}$ GS (y =) $Ae^{-4x} + \frac{4}{5} \cos 3x + \frac{3}{5} \sin 3x$ SR Integrating factor method may be use $e^{-4x} \rightarrow 0, \frac{4}{5} \cos 3x + \frac{3}{5} \sin 3x = \frac{\sin}{\cos}(3x + \alpha)$ $\Rightarrow -1 \le y \le 1$ OR $-1 \le y \le 1$ abc = (ab)c = (ba)c = b(ac) = b(ca) = (bc)a = (cb)a = cba Minimum working: abc = bac = bca = cba OR $abc = acb = cab = cba$ $\{e, a\}, \{e, b\}, \{e, c\}, \{e, bc\}, \{e, ca\}, \{e, ab\}, \{e, abc\}$ $\{e, a, b, ab\}, \{e, a, c, ca\}, \{e, b, c, bc\}$ $\{e, a, b, ab\}, \{e, a, ca, abc\}, \{e, c, ab, abc\}$ $\{e, bc, ca, ab\}$ All elements ($\ne e$) have order 2 OR all are self-inverse	$m+4 (= 0) \Rightarrow CF (y =)Ae^{-4x}$ A12METHOD 2Separating variables on $\frac{dy}{dx} + 4y = 0$ $\Rightarrow \ln y = -4x$ M1 $\Rightarrow CF (y =)Ae^{-4x}$ A1PI $(y =) p \cos 3x + q \sin 3x$ B1 $y' = -3p \sin 3x + 3q \cos 3x$ M1 $\Rightarrow (-3p + 4q) \sin 3x + (4p + 3q) \cos 3x = 5 \cos 3x$ A1 $\Rightarrow -3p + 4q = 0$ $\Rightarrow p = \frac{4}{5}, q = \frac{3}{5}$ M1 $\Rightarrow -3p + 4q = 0$ $\Rightarrow p = \frac{4}{5}, q = \frac{3}{5}$ M1 $\Rightarrow -3p + 4q = 0$ $\Rightarrow p = \frac{4}{5}, q = \frac{3}{5}$ M1 $\Rightarrow -3p + 4q = 0$ $\Rightarrow p = \frac{4}{5}, q = \frac{3}{5}$ M1 $\Rightarrow -4q + 3q = 5$ $\Rightarrow p = \frac{4}{5}, q = \frac{3}{5}$ M1 $\Rightarrow -1 \leqslant y \leqslant 1$ $OR -1 \lesssim y \lesssim 1$ M1 $\Rightarrow -1 \leqslant y \leqslant 1$ $OR -1 \lesssim y \lesssim 1$ A1 $\sqrt{2}$ III $abc = (ab)c = (ba)c = b(ac) =$ M1 $b(ca) = (bc)a = cba$ $A1 - 2$ $B1 = b(ca) = (ba)c = b(ac) =$ M1 $B1 = bac = bca = cba$ $B1 =$ $OR abc = acb = cab = cba$ B1 $(e, a), \{e, b\}, \{e, c\}, \{e, bc\}, \{e, ca\}, \{e, ab, abc\}$ B1 $\{e, a, b, ab\}, \{e, a, c, ca\}, \{e, b, c, bc\}$ B1 $\{e, a, b, ca, bc\}, \{e, b, ca, abc\}, \{e, c, ab, abc\}$ B1 $\{e, bc, ca, ab\}$ B1 3 All elements ($\neq e$) have order 2B1* OR all are self-inverseB1*

4727

Mark Scheme

5 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = k u^{k-1} \frac{\mathrm{d}u}{\mathrm{d}x}$	M1	For using chain rule
	dx = ku dx	A1	For correct $\frac{dy}{dx}$
	$\Rightarrow x k u^{k-1} \frac{\mathrm{d}u}{\mathrm{d}x} + 3u^k = x^2 u^{2k}$	M1	For substituting for y and $\frac{dy}{dx}$
	$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{3}{kx}u = \frac{1}{k}xu^{k+1}$	A1 4	For correct equation AG
(ii)	k = -1	B1 1	For correct <i>k</i>
(iii)	$\frac{\mathrm{d}u}{\mathrm{d}x} - \frac{3}{x}u = -x \implies \mathrm{IF} \ \mathrm{e}^{-\int \frac{3}{x}\mathrm{d}x} = \mathrm{e}^{-3\ln x} = \frac{1}{x^3}$	B1√	For correct IF
	$dx x^{\alpha} x \rightarrow 1 c \qquad c \qquad x^{3}$		f.t. for IF = $x^{\frac{3}{k}}$ using k or their numerical value for k
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(u \cdot \frac{1}{x^3} \right) = -\frac{1}{x^2}$	M1	For $\frac{d}{dx}(u \cdot \text{their IF}) = -x \cdot \text{their IF}$
	$\Rightarrow u \cdot \frac{1}{x^3} = \frac{1}{x} (+c) \Rightarrow y = \frac{1}{cx^3 + x^2}$	A1 A1 4	For correct integration both sides For correct solution for <i>y</i>
		9	
6 (a)	Closure $(ax+b)+(cx+d) = (a+c)x+(b+d)$	B1	For obtaining correct sum from 2 distinct
	$\in P$	B1	elements For stating result is in <i>P</i> <i>OR</i> is of the correct form
	Identity $0x + 0$	B1	SR award this mark if any of the closure result, the identity or the inverse element is stated to be in <i>P OR</i> of the correct form For stating identity (allow 0)
	Inverse $-ax-b$	B1 4	For stating inverse
(b) (i)	Order 9	B1* 1	For correct order
(ii)	<i>x</i> +2	B1 1	For correct inverse element
(iii)	(ax+b)+(ax+b)+(ax+b) = 3ax+3b	M1	For considering sums of $ax+b$
	(ax+b)+(ax+b)+(ax+b)-3ax+3b		and obtaining $3ax + 3b$
	=0x+0	A 1	For equating to $0x + 0$ OR 0
	$\Rightarrow ax+b$ has order $3 \forall a, b$ (except $a = b = 0$)	A1	and obtaining order 3
			SR For order 3 stated only <i>OR</i> found from incomplete consideration of numerical cases award B1
	Cyclic group of order 9 has element(s) of order 9	M1 (*dep)	For reference to element(s) of order 9
	$\Rightarrow (Q, + \pmod{3})$ is not cyclic	A1 4	For correct conclusion
		10	

Mark Scheme

Mark Scheme

8 (i)	$\operatorname{Re}(c+\mathrm{i}s)^4 = \cos 4\theta = c^4 - 6c^2s^2 + s^4$	M1* A1 M1	For expanding $(c+is)^4$: at least 2 terms and 1 binomial coefficient needed For 3 correct terms
	$\cos 4\theta = c^4 - 6c^2(1 - c^2) + (1 - c^2)^2$	(*dep)	For using $s^2 = 1 - c^2$
	$\Rightarrow \cos 4\theta = 8\cos^4 \theta - 8\cos^2 \theta + 1$	A1 4	For correct expression for $\cos 4\theta$ CAO
(ii)	$\cos 4\theta \cos 2\theta = (8c^4 - 8c^2 + 1)(2c^2 - 1)$		For multiplying by $(2c^2 - 1)$
	$=16\cos^6\theta-24\cos^4\theta+10\cos^2\theta-1$	B1 1	to obtain AG WWW
(iii)	$16c^6 - 24c^4 + 10c^2 - 2 = 0$	M1	For factorising sextic
	$\Rightarrow \left(c^2 - 1\right) \left(8c^4 - 4c^2 + 1\right) = 0$		with $(c-1)$, $(c+1)$ or (c^2-1)
	For quartic, $b^2 - 4ac = 16 - 32 < 0$	A1	For justifying no other roots CWO
	$\Rightarrow c = \pm 1 \text{ only} \Rightarrow \theta = n\pi$	A1 3	For obtaining $\theta = n\pi$ AG
			Note that M1 A0 A1 is possible
		SR	For verifying $\theta = n \pi$ by substituting $c = \pm 1$
			into $16c^6 - 24c^4 + 10c^2 - 2 = 0$ B1
(iv)	$16c^6 - 24c^4 + 10c^2 = 0$		
	$\Rightarrow c^2 \left(8c^4 - 12c^2 + 5\right) = 0$	M1	For factorising sextic with c^2
	For quartic, $b^2 - 4ac = 144 - 160 < 0$	A1	For justifying no other roots CWO
	$\Rightarrow \cos\theta = 0$ only	A1 3	For correct condition obtained AG
			Note that M1 A0 A1 is possible
		SR	For verifying $\cos \theta = 0$ by substituting $c = 0$
			into $16c^6 - 24c^4 + 10c^2 = 0$ B1
		SR	For verifying $\theta = \frac{1}{2}\pi$ and $\theta = -\frac{1}{2}\pi$ satisfy
			$\cos 4\theta \cos 2\theta = -1 B1$
		11	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

